Giả sử đa thức \(=0\)
\(\rightarrow x\left(2x-4\right)-3\left(4-2x\right)=0\)
\(2x^2-4x-12+6x=0\)
\(2x^2+2x-12=0\)
\(x^2+x-6=0\)
\(x^2+3x-2x-6=0\)
\(x\left(x+3\right)-2\left(x+3\right)=0\)
\(\left(x+3\right)\left(x-2\right)=0\)
\(\rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\) \(\rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-3;2\right\}\) là nghiệm của đa thức
x(2x - 4) - 3(4 - 2x) = 0
\(\Leftrightarrow\) x(2x - 4) + 3(2x - 4) = 0
\(\Leftrightarrow\) (2x - 4)(x + 3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)