PB

Tìm n ∈ Z để 2n2 – n + 2 chia hết cho 2n + 1.

CT
9 tháng 5 2017 lúc 17:05

Cách 1: Thực hiện phép chia 2n2 – n + 2 cho 2n + 1 ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

⇔ 3 ⋮ (2n + 1) hay (2n + 1) ∈ Ư(3)

⇔ 2n + 1 ∈ {±1; ±3}

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Cách 2:

Ta có:

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

2n2 – n + 2 chia hết cho 2n + 1

Giải bài 83 trang 33 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ 2n + 1 ∈ Ư(3) = {±1; ± 3}.

   + 2n + 1 = 1 ⇔ 2n = 0 ⇔ n = 0

   + 2n + 1 = -1 ⇔ 2n = -2 ⇔ n = -1

   + 2n + 1 = 3 ⇔ 2n = 2 ⇔ n = 1

   + 2n + 1 = -3 ⇔ 2n = -4 ⇔ n = -2.

Vậy n ∈ {-2; -1; 0; 1.}

Chú ý: Đa thức A chia hết cho đa thức B khi phần dư của phép chia bằng 0.

Bình luận (0)

Các câu hỏi tương tự
DF
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LT
Xem chi tiết
WG
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
SL
Xem chi tiết
PB
Xem chi tiết