1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
\(n\in N\) thỏa mãn \(\sqrt{4n+1}\in N\)
tìm n đi
Tìm các số tụ nhiên n thỏa mãn \(\sqrt{n+2}+\sqrt{n^3+1} \in \mathbb{N}\)
Tìm các số tụ nhiên n thỏa mãn \(\sqrt{n+2}+\sqrt{n^3+1} \in \mathbb{N}\)
Giả sử n là số tự nhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chính phương
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n
3 − 5n − 1 không là số chính phương.
Xl vì táu ngu :<
Tìm tất cả số tự nhiên (m,n) . Thỏa mãn \(\left(3+\sqrt{2}\right)^m=\left(1+2\sqrt{3}\right)^n\)
CẢM ƠN
tìm tất cả các số tự nhiên n sao cho với mọi số tự nhiên n thỏa mãn 1<n<m/2 thì (m-n)/n không phải phân số tối giản