\(2n^2+5n-1=2n^2-n+6n-3+2\)
\(=n\left(2n-1\right)+3\left(2n-1\right)+2\)
Để \(2n^2+5n-1⋮2n-1\)thì \(2⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà 2n - 1 là số lẻ nên:
\(2n-1\in\left\{-1;1\right\}\Rightarrow n\in\left\{0;1\right\}\)
Chúc bạn học tốt.
\(2n^2+5n-1\)chia hết cho \(2n-1\)
\(\Leftrightarrow2\)chia hết cho \(2n-1\)
\(\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\Leftrightarrow2n\in\left\{-1;0;2;3\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{1}{2};0;1;\frac{3}{2}\right\}\)
Mà \(n\in Z\)
\(\Rightarrow n\in\left\{0;1\right\}\)