\(a,n+4⋮n+3\)
\(\Leftrightarrow\left(n+3\right)+1⋮n+3\)
Vì \(n+3⋮n+3\Rightarrow1⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2\right\}\)
Vậy \(n\in\left\{-4;-2\right\}.\)
b,\(n-5⋮n+6\)
\(\Leftrightarrow\left(n+6\right)-11⋮n+6\)
Vì \(n+6⋮n+6\Rightarrow-11⋮n+6\)
\(\Rightarrow n+6\inƯ\left(-11\right)=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n\in\left\{-17;-7;-5;5\right\}\)
Vậy\(n\in\left\{-17;-7;-5;5\right\}.\)
c,\(2n-7⋮n+4\)
\(\Leftrightarrow\left(n+4\right)+\left(n+4\right)-15⋮n+4\)
Vì \(n+4⋮n+4\Rightarrow-15⋮n+4\)
\(\Rightarrow n+4\inƯ\left(-15\right)=\left\{-15;-5;-3;-1;1;3;5;15\right\}\)
\(\Rightarrow n\in\left\{-19;-9;-7;-5;-3;-1;1;11\right\}\)
Vậy\(n\in\left\{-19;-9;-7;-5;-3;-1;1;11\right\}.\)
a, n+4 chia hết cho n+3
=>n+3+1 chia hết cho n+3
=>1 chia hết cho n+3
=>n+3 E Ư(1)={1;-1}
=>n E {-2;-4}
b, n-5 chia hết cho n+6
=>n+6-11 chia hết cho n+6
=>11 chia hết cho n+6
=>n+6 E Ư(11)={1;-1;11;-11}
=>n E {-5;-7;5;-17}
c,2n-7 chia hết cho n+4
=>2n+8-15 chia hết cho n+4
=>2(n+4)-15 chia hết cho n+4
=>15 chia hết cho n+4
=>n+4 E Ư(15)={1;-1;3;-3;5;-5;15;-15}
=>n E {-3;-5;-1;-7;1;-9;11;-19}
a. \(n+4⋮n+3\)
Mà \(n+3⋮n+3\)
\(\Leftrightarrow1⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+3=-1\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-2\\n=-4\end{cases}}\)
Vậy ..........
b/ \(n-5⋮n+6\)
Mà \(n+6⋮n+6\)
\(\Leftrightarrow11⋮n+6\)
\(\Leftrightarrow x+6\inƯ\left(11\right)\)
Suy ra :
+) x + 6 = 1 => x = -5
+) x + 6 = 11 => x = 5