Với \(n\in N|n^2⋮n+2\)
Áp dụng CM \(x+y=x\times y\), thấy ngay tính chất của 2 (:
Vậy \(n=2\)
\(\frac{n^2}{n+2}\in Z\)( n\(\in\)N )
Ta có : \(\frac{n^2}{n+2}=\frac{n^2+2n-2n}{n+2}=\frac{n\left(n+2\right)-2n+4-4}{n+2}\)
\(=n-\frac{2n+4-4}{n+2}=n-2-\frac{4}{n+2}\)
Để \(\frac{n^2}{n+2}\in Z\)thì\(\frac{4}{n+2}\in Z\)
=> n + 2\(\in\){ - 4 ; - 2 ; - 1 ; 1 ; 2 ; 4 }
=> n\(\in\){ - 6 ; - 4 ; - 3 ; - 1 ; 0 ; 2 }
Mà n\(\in\)N => n\(\in\){ 0 ; 2 }
Vậy n\(\in\){ 0 ; 2 }