Có 6n-8=6(n+2)-20
Vì n+2 \(⋮\)n+2 \(\forall n\inℤ\)
=> 6(n+2) \(⋮\)n+2 \(\forall n\inℤ\)
Để 6(n+2)-20 \(⋮\)n+2 => 20 \(⋮\)n+2
\(n\inℤ\Rightarrow n+2\inℤ\Rightarrow n+2\inƯ\left(20\right)=\left\{-20;-10;-5;-4;-2;-1;1;2;4;5;10;20\right\}\)
Ta có bảng giá trị
n+2 | -20 | -10 | -5 | -4 | -2 | -1 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -22 | -12 | -7 | -6 | -4 | -3 | -1 | 0 | 2 | 3 | 8 | 18 |
Vậy \(n=\left\{-22;-12;-7;-6;-4;-3;-1;0;2;3;8;18\right\}\)
n+2 là ước của 6n-8
\(\Rightarrow\)6n-8\(⋮\)n+2
\(\Rightarrow\)6n+12-20\(⋮\)n+2
\(\Rightarrow\)6(n+2)-20\(⋮\)n+2
\(\Rightarrow n+2\inƯ\left(20\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm10;\pm20\right\}\)
\(\Rightarrow n\in\left\{\pm1;0;-4;2;-6;3;-7;8;-12;18;-22\right\}\)
Ta có
(6n-8) : (n+2)
(6n+12-20): (n+2)
Ta thấy (6n+12) chia hết (n+2) nên 20 chia hết cho (n+2)
Ta có
(6n-8) : (n+2)
(6n+12-20): (n+2)
Ta thấy (6n+12) chia hết (n+2) nên 20 chia hết cho (n+2)
→ (n+2) thuộc Ư(20)={ 1 ; 2 ; 4 ; 5 ; 10 ; 20 }
Ta có bảng sau
n+2 | 1 | 2 | 4 | 5 | 10 | 20
n |-1| 0 | 2 | 3 | 8 | 18 |
vậy n = { -1 ; 0 ; 2 ; 3 ; 8 ; 18 }
học tốt