\(N=\frac{3n+2}{n+1}=\frac{3n+3-1}{n+1}=\frac{3\left(n+1\right)-1}{n+1}=3-\frac{1}{n+1}\)
Để \(N=1+\frac{1}{n+1}\) đạt GTLN <=> \(\frac{1}{n+1}\) đạt GTLN
=> n + 1 là số nguyên dương nhỏ nhất => n + 1 = 1 => n = 0
=> \(N_{max}=\frac{3.0+2}{0+1}=2\)
Vậy GTLN của \(N\) là 2 <=> n = 0