Dễ dàng CM được: \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)-5\left(n-1\right)n\left(n+1\right)\)
Do đó: \(n^5-n⋮3\)(tích 3 số nguyên liên tiếp)
=> \(n^5-n+2\)chia 3 dư 2
Mà số chính phương chia 3 dư 0 hoặc 1
Vậy không tồn tại số n thả mãn