NT

tìm n để n+4 và n+11 đều là hai số chính phương 

DA
30 tháng 5 2017 lúc 10:47

N = 5 nhé bạn

Bình luận (0)
HT
30 tháng 5 2017 lúc 10:55

vì n+4 và n+11 đều là số chính phương nên có hệ

\(\hept{\begin{cases}n+4=a^2\\n+11=b^2\end{cases}}\)trừ phương trình ta có :\(b^2-a^2=7\Leftrightarrow\left(b-a\right)\left(b+a\right)=7\) do đó b-a và b+a là ước của 7 nên

\(\hept{\begin{cases}a+b=7\\b-a=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=4\end{cases}\Leftrightarrow}\hept{\begin{cases}n+4=9\\n+11=16\end{cases}\Leftrightarrow}n=5}\)
Bình luận (0)
NA
30 tháng 5 2017 lúc 11:18

n+4 và n+11 là các số chính phương

=> \(n+4=a^2\) ; \(n+11=b^2\)(*)

Do \(n+11>n+4\)=> \(b^2>a^2\)( a và b là số tự nhiên )

Có \(b^2-a^2=\left(n+11\right)-\left(n+4\right)\)

=>\(\left(b+a\right)\left(b-a\right)=n+11-n-4\)

=> \(\left(b+a\right)\left(b-a\right)=7\)

Ta có ước tự nhiên của 7 là các số: 1;7 (7 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có:

\(\left(b+a\right)=7;\left(b-a\right)=1\)

Cộng hai về b+a và b-a ta được:

\(\left(b+a\right)+\left(b-a\right)=7+1\)

=> \(b+a+b-a=8\)

=>\(2b=8\)

=>\(b=4\)

Thay b=4 vào (*) ta được :

\(n+11=b^2\)=> \(n+11=4^2=16\)=> \(n=16-11=5\)

Vậy n=5 thì n+4 và n+11 là các số chính phương.

Bình luận (0)
NP
30 tháng 5 2017 lúc 11:21

Trời, bài này làm theo cách lớp 6 mà lại làm cách lớp 8,9 hết zậy???

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
N1
Xem chi tiết
TH
Xem chi tiết
HM
Xem chi tiết
KS
Xem chi tiết
CA
Xem chi tiết
XN
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết