TH

tìm n để n^2+2006 là số chính phươg

giải chi tiết giùm mik, hứa sẽ tik cho ai làm đúng

TA
12 tháng 2 2016 lúc 16:18

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Bình luận (0)
NT
12 tháng 2 2016 lúc 16:19

Đặt n^2+2006=a^2

(a-n)(a+n)=2006

Vì (a-n)+((a+n)=2a là số chẵn.mặt # a và n cùng tính chẵn lẻ mà 2006 chẵn.

=> a và n cùng tính chẵn. 

=> (a-n)(a+n) chia hết cho 4 mà 2006 k chia hết cho 4

nên k tồn tại n

Bình luận (0)
TH
12 tháng 2 2016 lúc 16:24

mik sẽ tik cả 2

Bình luận (0)