NT

tìm n để n^2 -n +2 là số chính phương

NT
31 tháng 8 2023 lúc 9:20

Giả sử \(n^2-n+2\) là số chính phương \(\left(n\inℤ^+\right)\) 

Đặt \(n^2-n+2=k^2\ge0\left(k\inℕ\right)\)

\(\Leftrightarrow4n^2-4n+8=4k^2\)

\(\Leftrightarrow4n^2-4n+1+7=4k^2\)

\(\Leftrightarrow4k^2-\left(2n-1\right)^2=7\)

\(\Leftrightarrow\left(2k+2n-1\right)\left(2k-2n+1\right)=7\)

vì \(7=1.7>0;n\inℤ^+\)

\(\Leftrightarrow\left(2k+2n-1\right);\left(2k-2n+1\right)\in\left\{1;7\right\}\)

\(TH1:\left\{{}\begin{matrix}2k+2n-1=1\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4n-2=-6\\2k-2n+1=7\end{matrix}\right.\) \(\Leftrightarrow n=-1\left(không.thỏa\right)\)

\(TH2:\left\{{}\begin{matrix}2k+2n-1=7\\2k-2n+1=1\end{matrix}\right.\) \(TH2:\left\{{}\begin{matrix}4n-2=6\\2k-2n+1=1\end{matrix}\right.\) \(\Leftrightarrow n=2\left(thỏa\right)\)

Vậy \(n=2\) thỏa đề bài

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
NT
Xem chi tiết
QD
Xem chi tiết
AC
Xem chi tiết
CK
Xem chi tiết
GS
Xem chi tiết
MT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết