DT

Tìm n để 2n-1 và 9n+4 nguyên tố cùng nhau

SG
27 tháng 7 2016 lúc 16:31

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau

Bình luận (0)
H24
27 tháng 7 2016 lúc 17:45

Gọi d là ước nguyên tố chung của 2n - 1 và 9n + 4

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

=> d thuộc {1 ; 17}

Do d nguyên tố => d = 17

Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 - 17 chia hết cho 17; 9n + 4 - 85 chia hết cho 17

=> 2n - 18 chia hết cho 17; 9n - 81 chia hết cho 17

=> 2.(n - 9) chia hết cho 17; 9.(n - 9) chia hết cho 17

Mà (2;17)=1; (9;17)=1 => n - 9 chia hết cho 17

=> n = 17.k + 9 (k thuộc Z)

Vậy với n khác 17.k + 9 (k thuộc Z) thì 2n - 1 và 9n + 4 nguyên tố cùng nhau

Bình luận (0)
TV
16 tháng 1 2018 lúc 21:15

gọi \(d\) là 1 ước nguyên tố chung của \(2n-1;9n+4\)

\(\Rightarrow\hept{\begin{cases}2n-1⋮d\\9n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}9\left(2n-1\right)⋮d\\2\left(9n+4\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}18n-9⋮d\\18n+8⋮d\end{cases}}\)

\(\Rightarrow18n+8-\left(18n-9\right)⋮d\)

\(\Rightarrow18n+8-18n+9\)  \(⋮d\)

\(\Rightarrow17\)                                      \(⋮d\)

\(\Rightarrow d\in\text{Ư}_{\left(17\right)}=\text{ }\left\{1;17\right\}\)

với \(d=17\)

\(\Rightarrow2n-1⋮17\Rightarrow2n+16-17⋮17\Rightarrow2n+16⋮17\left(v\text{ì}17⋮17\right)\)

                                                                    \(\Rightarrow2\left(n+8\right)⋮17\)

                                                                    \(\Rightarrow n+8\)     \(⋮17\left(v\text{ì}\left(2;17\right)=1\right)\)

                                                                    \(\Rightarrow n+8=17k\left(k\in N\right)\)

                                                                     \(\Rightarrow n=17k-8\)

vậy \(n\ne17k-8\) thì 2 số \(2n-1;9n+4\) nguyên tố cùng nhau

                                                                    

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết
BD
Xem chi tiết
H24
Xem chi tiết
GS
Xem chi tiết