3n + 10 chia hết cho n + 2
=> 3n + 6 + 4 chia hết cho n + 2
=> 3(n + 2) + 4 chia hết cho n + 2
Có 3(n + 2) cia hết cho n + 2
=> 4 chia hết cho n + 2
=>n + 2 thuộc Ư(4)
=> n + 2 thuộc {1; -1; 2; -2; 4; -4}
=> n thuộc {-1; -3; 0; -4; 2; -6}
2n - 1 chia hết cho n - 1
=> 2n - 2 + 1 chia hết cho n - 1
=> 2(n - 1) chia hết cho n - 1
Có 2(n - 1) chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1)
=> n - 1 thuộc {1; -1}
=> n thuộc {2; 0}
3n + 10 chia het cho n + 2
vay 3n + 10 = n + n + n + 10
ta co : \(\orbr{\begin{cases}\\\end{cases}}\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+4\orbr{\begin{cases}\\\end{cases}}\) chia het cho (n + 2 )
Ma (n +2) chia het cho (n + 2)
\(\Rightarrow\) 4 chia het cho (n +2)
\(\Rightarrow\)(n + 2) \(\in\)Ư(4)
Ta co : Ư(4)= 1;2;4
Neu n +2=1 thi n = 1-2=-1( BAN CHUA GHI RO n THUOC N HAY Z)
Neu n +2=2 thi n = 2-2=0
Neu n + 2=4 thi n = 4-2=0
2n - 1 chia het cho n-1
Ta co 2n - 1 = n + n -1
Vay n + (n -1) chia het cho n-1
Ma n-1 chia het cho n -1
\(\Rightarrow\) n chia het cho ( n -1)
Ta co n = n - 1 + 1
Vay (n -1) +1 chia het cho n - 1
\(\Rightarrow\)1 chia het cho n -1 ( vi n-1 chia het cho n -1)
\(\Rightarrow\) (n - 1 )\(\in\)Ư(1)
Ta co Ư(1) = 1
TA co n - 1 = 1 thi n= 1 + 1 =2
n = 2