Gọi số cần tìm là n, 1000 ≤ n ≤ 9999 (1). Vì n ⋮ 121 dư 58 => Đặt n = 121a + 58 (a ∊ N*) ; Vì n ⋮ 122 dư 42 => Đặt n = 122b + 42 (b ∊ N*) => 121a + 58 = 122b + 42 => 121a - 121b = b - 16 => 121(a - b) = b - 16 => b - 16 ⋮ 121 => b - 16 ∊ B(121) = {0;121;...} (2). Để n nhỏ nhất và có 4 chữ số thì 1000 ≤ 122b + 42 ≤ 9999 => 958 ≤ 122b ≤ 9957 => 8 ≤ b ≤ 81 => 0 ≤ b - 16 ≤ 65 (3). Từ (1)(2)(3) => b - 16 = 0 => b = 16 => n = 122.16 + 42 = 1994. Vậy số cần tìm là 1994