<=> \(\sqrt{X^2-2X+4}^2=\left(-\sqrt{X^2+10X+25}\right)^2\)
<=>\(^{X^2-2X+4=X^2+10X+25}\)
<=>-12x=21
<=>x=\(-\frac{21}{12}\)
\(\sqrt{x^2-2x+4}+\sqrt{x^2+10x+25}=\sqrt{\left(x-1\right)^2+3}+\sqrt{\left(x+5\right)^2}\)
<=> \(\sqrt{X^2-2X+4}^2=\left(-\sqrt{X^2+10X+25}\right)^2\)
<=>\(^{X^2-2X+4=X^2+10X+25}\)
<=>-12x=21
<=>x=\(-\frac{21}{12}\)
\(\sqrt{x^2-2x+4}+\sqrt{x^2+10x+25}=\sqrt{\left(x-1\right)^2+3}+\sqrt{\left(x+5\right)^2}\)
1) \(\sqrt{x^2}=2x-5\)
2) \(\sqrt{25x^2-10x+1}=2x-6\)
3) \(\sqrt{25-10x+x^2}=2x-5\)
4) \(\sqrt{1-2x+x^2}=2x-1\)
5) \(\sqrt{4x^2+4x+1}=-x-3\)
tìm min \(A=\sqrt{x^2+10x+26}+\sqrt{x^2+4x+4}\)
\(B=\sqrt{x^2+4x+8}+\sqrt{x^2-2x+2}\)
Bài tập:Giải các phương trình sau
1)\(\sqrt{-4^2+25}=x\)
2)\(\sqrt{x^2-10x+25}\)=2x+1
3)\(\sqrt{x^2-6x+9}+x=11\)
4)\(\sqrt{x^2-4x+3}=x-2\)
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
a) x+\(\sqrt{\left(x-2\right)^2}\)
b) \(\sqrt{\left(x-3\right)^2}\) -x
c) x-\(\sqrt{\left(x-1\right)^2}\)
d) \(\sqrt{m^2-6m+9}\) -2m
e) m-\(\sqrt{m^2-2m+1}\)
f) 2x-\(\sqrt{4x^2+4x+1}\)
g)\(\sqrt{x^2-10x+25}\) -x
h) \(\dfrac{\sqrt{x^2+10x+25}}{x^2-25}\)
i) \(\dfrac{\sqrt{1-2m+m^2}}{m^2-1}\)
tìm gtnn
a)\(\sqrt{x^2}+\sqrt{x^2+2x+1}\)
b)\(\sqrt{x^2}+\sqrt{x^2+4x+4}+\sqrt{x^2+10x+25}\)
c) \(\sqrt{x^2}+\sqrt{\left(x+2\right)^2}+...+\sqrt{\left(x+2017\right)^2}\)
Gi ải phương trình
a) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) b) \(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)
c) \(\sqrt{x^2-10x+25}=2\) d) \(\sqrt{x^2-14x+49}-5=0\)
1. Giải phương trình:
1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)
3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)
4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
5/ \(x^2-\left(m+1\right)x+2m-6=0\)
6/ \(615+x^2=2^y\)
2.
a, Cho các số dương a,b thoả mãn \(a+b=2ab\).
Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).
b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).
Tính GTNN và GTLN của biểu thức \(P=x+y\).
3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).
4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).
Giải các pt sau:\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\sqrt{x^2-10x+25}=3-19x\)
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)