Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

HH

Tìm Min,Max của Q=x\(\sqrt{x}\)+y\(\sqrt{y}\)Biết \(\sqrt{x}+\sqrt{y}=1\)

HN
26 tháng 11 2016 lúc 9:57

\(Q=x\sqrt{x}+y\sqrt{y}=\left(\sqrt{x}\right)^3+\left(\sqrt{y}\right)^3=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)\)

\(=x+y-\sqrt{xy}\)

Đặt \(a=\sqrt{x},b=\sqrt{y}\) (\(a,b\ge0\))

Ta đưa bài toán trở về dạng tìm max và min của biểu thức \(Q=a^2+b^2-ab\) biết \(a+b=1\)

\(Q=\left(a+b\right)^2-3ab\ge\left(a+b\right)^2-\frac{3.\left(a+b\right)^2}{4}=\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a=b\\a,b\ge0\end{cases}}\Leftrightarrow x=y=\frac{1}{4}\)

Lại có \(\sqrt{x}+\sqrt{y}=1\Rightarrow\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}}\)

Khi đó ta có \(Q\le1\)

Đẳng thức xảy ra khi x = 0 , y = 1 hoặc x = 1 , y = 0

Vậy : minQ = 1/4 <=> x = y = 1/4

maxQ = 1 <=> (x,y) = (0;1) ; (1;0)

Bình luận (0)
HH
26 tháng 11 2016 lúc 12:24

cảm ơn chị

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết
AV
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
VN
Xem chi tiết
TT
Xem chi tiết
AV
Xem chi tiết