NT

Tìm MinA=\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x-9}\)

NH
14 tháng 9 2020 lúc 20:21

P/s : sửa đề

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|1-2x\right|+\left|2x-3\right|\ge\left|1-2x+2x-3\right|=\left|-2\right|=2\)

Vậy min A = 2 khi và chỉ khi ...........................

Bình luận (0)
 Khách vãng lai đã xóa
LD
14 tháng 9 2020 lúc 20:28

Sửa một chút : \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

Đẳng thức xảy ra khi \(ab\ge0\)

=> \(\left(2x-1\right)\left(3-2x\right)\ge0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-1\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

2. \(\hept{\begin{cases}2x-1\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)( loại )

=> MinA = 2 <=> \(\frac{1}{2}\le x\le\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
BG
Xem chi tiết
NM
Xem chi tiết
DT
Xem chi tiết
KN
Xem chi tiết
TN
Xem chi tiết
QN
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết