VT

tìm min, max của \(A=\sqrt{x-2}+\sqrt{6-x}\) với \(2\le x\le6\)

HH
23 tháng 9 2015 lúc 22:29

Bình phương A ta được A=\(8+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

A min khi (x-2)(6-x) nhỏ nhất tương đương vs x=2 hoặc x=6. khi đó A=2 là nhỏ nhất

A max khi (x-2)(6-x) lớn nhất do 2 số kia có tổng ko đổi nên tích lớn nhất khi x-2=6-x tương đương với x=4

khi đó A=4 là lớn nhất

Bình luận (0)
TT
23 tháng 9 2015 lúc 22:29

\(A^2=x-2+6-x+2\text{ }\sqrt{\left(x-2\right)\left(6-x\right)}=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Vậy GTNN là 2 tại A x = 2 ; x = 6 

Vì  \(2\sqrt{\left(x-2\right)\left(6-x\right)}\le x-2+6-x=4\)

=> \(A^2\le4+4=8\Rightarrow A\le2\sqrt{2}\)

Vậy GTLN của A là ... tại x = 4 

Bình luận (0)

Các câu hỏi tương tự
BN
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
VL
Xem chi tiết
HN
Xem chi tiết
DD
Xem chi tiết