NH

Tìm min: K= x^2 - 2xy +2y^2 - 4y +2016

 

H24
5 tháng 11 2016 lúc 14:30

\(K=x^2-2xy+2y^2-4y+2016=\)\(x^2-2xy+y^2+y^2-4y+4+2012=\)\(\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\)\(\left(x-y\right)^2+\left(y-2\right)^2+2012\)

Vì \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow K_{min}=2012\) Khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\y=2\end{cases}\Rightarrow}x=y=2}\)

Bình luận (0)
HH
5 tháng 11 2016 lúc 14:23

\(x^2-2xy+2y^2-4y+2016\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+2012\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+2014\)

Xét đa thức \(\left(x-y\right)^2+\left(y-2\right)^2\)

Dễ thấy \(\left(x-y\right)^2+\left(y-2\right)^2\) luôn luôn dương với mọi giá trị của \(x,y\)

Vậy giá trị nhỏ nhất của k=2014

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết
VH
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
TH
Xem chi tiết
MC
Xem chi tiết
DH
Xem chi tiết