NT

Tìm min H với H=  x+ xy + y- 3x - 3y
Mình cần 3 cách làm nhé

DH
26 tháng 8 2017 lúc 19:54

\(H=x^2+xy+y^2-3x-3y\)

\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)

\(=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)

\(=\left[\left(x-1\right)^2+2.\frac{1}{2}.\left(x-1\right)\left(y-1\right)+\frac{1}{4}\left(y-1\right)^2\right]+\frac{3}{4}\left(y-1\right)^2-3\)

\(=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\)

Vì \(\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2\ge0\forall x;y\)

\(\Rightarrow H=\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2+\frac{3}{4}\left(y-1\right)^2-3\ge-3\forall x;y\) có GTNN là - 3

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left[\left(x-1\right)+\frac{1}{2}\left(y-1\right)\right]^2=0\\\frac{3}{4}\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)

Vậy \(H_{min}=-3\) tại \(x=1;y=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TP
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết
NY
Xem chi tiết
BK
Xem chi tiết
NA
Xem chi tiết
NH
Xem chi tiết