Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NA

Tìm min E = \(\sqrt{\left(x-2016\right)^2}+\sqrt{\left(x-1\right)^2}\)

KN
5 tháng 11 2019 lúc 21:07

\(E=\sqrt{\left(x-2016\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x-2016\right|+\left|x-1\right|\)

\(=\left|x-2016\right|+\left|1-x\right|\ge\left|\left(x-2016\right)+\left(1-x\right)\right|=2015\)

(Dấu "="\(\Leftrightarrow\left(x-2016\right)\left(1-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-2016\ge0\\1-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2016\\x\le1\end{cases}}\left(L\right)\)

\(TH2:\hept{\begin{cases}x-2016\le0\\1-x\le0\end{cases}}\Leftrightarrow1\le x\le2016\))

Vậy \(E_{min}=2015\Leftrightarrow1\le x\le2016\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
7 tháng 6 2017 lúc 18:03

Áp dụng BĐT |a|+|b|\(\ge\)|a+b| ta có:

\(E=\sqrt{\left(x-2016\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x-2016\right|+\left|x-1\right|\)

\(=\left|x-2016\right|+\left|-\left(x-1\right)\right|\)

\(=\left|x-2016\right|+\left|-x+1\right|\)

\(\ge\left|x-2016+\left(-x\right)+1\right|=2015\)

Xảy ra khi \(1\le x\le2016\)

Bình luận (0)
CW
21 tháng 7 2017 lúc 15:40

Nguyễn Huyền Anh

Bình luận (0)

Các câu hỏi tương tự
WR
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
DK
Xem chi tiết
TL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
VD
Xem chi tiết