H24

Tìm Min A = \(\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)

H24
30 tháng 3 2018 lúc 21:52

Ta có:

\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

Áp dụng bđt Minkowski, ta có:

\(\Rightarrow A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)

\(A=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\)

\(A=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)

\(\Rightarrow A\ge4.Đ\text{TXR}\Leftrightarrow\orbr{\begin{cases}x=1;y=-1\\x=3;y=-1\end{cases}}\)

Dấu "=" xảy ra khi (x; y) = (3; -1)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
HM
Xem chi tiết
HN
Xem chi tiết
ST
Xem chi tiết
TN
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
ZT
Xem chi tiết
LP
Xem chi tiết