Nhận xét : M > 0
Cách 1. Áp dụng bđt Bunhiacopxki , ta có :
\(M^2=\left(1.\sqrt{x-1}+1.\sqrt{9-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+9-x\right)\)
\(\Rightarrow M^2\le16\Rightarrow M\le4\)
Suy ra Max M = 4 \(\Leftrightarrow\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\) \(\Leftrightarrow x=5\)
Cách 2. Ta có : \(M^2=8+2\sqrt{\left(x-1\right).\left(9-x\right)}\)
Áp dụng bđt Cauchy : \(2\sqrt{\left(x-1\right)\left(9-x\right)}\le x-1+9-x=8\)
\(\Rightarrow M^2\le16\Rightarrow M\le4\)
Max M = 4 \(\Leftrightarrow\begin{cases}1\le x\le9\\\sqrt{x-1}=\sqrt{9-x}\end{cases}\) <=> x = 5