1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
P=\(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
tìm Max P
Cho P = \(\frac{1}{\sqrt{x}+2}-\frac{5}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}\)
a) Rút gọn P.
b) Tìm Pmax
Tìm max A = \(3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với \(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\)
Giúp mình với mọi người ơi T^T
x;y;z là các số thức dương thỏa mãn xyz=1.Tìm Max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+3zx+6}}\)
Tìm max
\(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\left(\frac{1}{2}\le x\le\frac{\sqrt{5}}{2}\right)\)
\(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}\left(x,y,z>0\right)\)
Bài 6: Cho A= \(\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
a) Tính A khi x=16; x= \(3-2\sqrt{2}\)
b) Tìm x biết: A=2 ; A<\(\frac{3}{2}\); A= \(\sqrt{x}+1\)
c) Tìm min, max (nếu có) của A
\(\)TÌM MAX
I = \(\frac{-x+5\sqrt{x}-3}{\sqrt{x}+1}\)
Tìm min của biểu thức
\(A=32\frac{x}{y}+2008\frac{y}{x}\left(vớix+\frac{1}{y}\le1\right)\)
Tìm max và min của
\(B=3\sqrt{x-1}+4\sqrt{5-x}\)
Bài 1: Cho biểu thức: \(A=\left(\frac{2\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}-3}\right):\frac{3}{\sqrt{x}-3}\)
a) Rút gọn A
b) Tìm x để A=\(\frac{5}{6}\)
c) Tìm giá trị nhỏ nhất của A
Bài 2:
a) Giải hệ: \(\hept{\begin{cases}\left|x+5\right|-\frac{2}{\sqrt{y-2}}=4\\\left|x+5\right|+\frac{1}{\sqrt{y-2}}=3\end{cases}}\)
b) Giải phương trình: \(\sqrt{x+3}+\sqrt{3x+1}=x-1\)
Bài 3: Với a, b là các số dương thỏa mãn điều kiện: \(a+b\le2\)
Tìm giá trị max của biểu thức: \(P=\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)