n2+2014" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n2+2014" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> không là số chính phương.
Giả sử tồn tại m \(\in\)N để m2 + 2014 là số chính phương
=> m2 + 2014 = n2 ( n \(\in\)N*)
n2 - m2 = 2014
Xét : (n - m )( m+n) = (n-m)n + (n-m)m = n2 - m.n + m.n - m2 = n2 - m2
( n-m)( n + m) = 2014 (1)
Thấy ( n-m )+( n + m) = 2n là số chẵn
Vậy n -m và n +m là hai số cùng chẵn hoặc cùng lẻ
(n -m)(n+m) = 2014 là 1 số chẵn
=> n - m và n + m không thể là hai số lẻ
=> n - m và n + m không thể là hai số chẵn.
=> n - m = 2p và m +n = 2q ( p;q \(\in\)N)
=> (n-m)(n +m) = 2p . 2q = 4pq
=> (n-m)(n+m) \(⋮\)4 (2)
Mà 2014 \(⋮̸\)4 (3)
Từ (1),(2),(3) => Giả sử này sai => không có m t/m