ND

Tìm m, n nguyên dương thỏa mãn : \(2^m+2^n=2^{m+n}\)

H24
25 tháng 3 2020 lúc 21:35

\(2^m+2^n=2^{m+n}\)

\(\Leftrightarrow2^m-2^{m+n}+2^n=0\)

\(\Leftrightarrow2^m\left(1-2^n\right)-1+2^n=-1\)

\(\Leftrightarrow\left(2^m-1\right)\left(1-2^n\right)=-1\)

\(\Leftrightarrow\hept{\begin{cases}2^m-1=1\\1-2^n=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2^m-1=1\\1-2^n=1\end{cases}}\\\hept{\begin{cases}2^m-1=-1\\1-2^n=-1\end{cases}}\end{cases}}\)hoặc \(\hept{\begin{cases}2^m-1=-1\\1-2^n=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2^m=0\\2^n=0\end{cases}}\)( vô lí )  hoặc \(\hept{\begin{cases}2^m=2\\2^n=2\end{cases}}\)

\(\Leftrightarrow m=n=1\)

Bình luận (0)
 Khách vãng lai đã xóa
ZZ
25 tháng 3 2020 lúc 21:38

Không mất tính tổng quát giả sử \(m\ge n\)

Khi đó:\(m=n+k\left(k\in N\right)\)

Ta có
\(2^{n+k}+2^n=2^{2n+k}\)

\(\Leftrightarrow2^n\left(2^k+1\right)=2^{2n+k}\)

Do VP là lũy thừa của 2 nên VP là tích của các số chẵn => \(2^k+1\) chẵn

\(\Rightarrow2^k\) lẻ suy ra k=0

Suy ra m=n

Khi đó pt tương đương với \(2^m+2^m=2^{m+m}\Leftrightarrow2\cdot2^m=4^m\Leftrightarrow2^m=2\Rightarrow m=1\)

Vậy m=1;n=1 là nghiệm của phương trình trên

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NT
Xem chi tiết
BM
Xem chi tiết
DV
Xem chi tiết
TT
Xem chi tiết
BM
Xem chi tiết
KB
Xem chi tiết
ZZ
Xem chi tiết
HA
Xem chi tiết
NT
Xem chi tiết