2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
=>2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
b, Vì \(2^m-2^n=256>0\) nên m >n
Đặt m-n=d (d >0)
Ta có :
\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)
=> 2n =28 và 2d-1=1
=>n=8 và d=1
=> m=1+8=9
Vậy m=9, n=8
Đúng 0
Bình luận (0)