\(x^3+x^2+x=m\left(x^2+1\right)^2\Leftrightarrow\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}=m\)
Xét hàm \(f\left(x\right)=\dfrac{x^3+x^2+x}{\left(x^2+1\right)^2}\)
\(f'\left(x\right)=\dfrac{\left(3x^2+2x+1\right)\left(x^2+1\right)^2-4x\left(x^2+1\right)\left(x^3+x^2+x\right)}{\left(x^2+1\right)^4}\)
\(f'\left(x\right)=\dfrac{\left(x^2+1\right)\left(3x^2+2x+1\right)-4x\left(x^3+x^2+x\right)}{\left(x^2+1\right)^3}\)
\(f'\left(x\right)=\dfrac{-x^4-2x^3+2x+1}{\left(x^2+1\right)^3}=\dfrac{\left(1-x\right)\left(x+1\right)^3}{\left(x^2+1\right)^3}\)
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\) \(\Rightarrow f\left(x\right)\) có đúng 2 cực trị
\(\Rightarrow\) Đường thẳng \(y=m\) cắt đồ thị hàm số \(y=f\left(x\right)\) tại tối đa 3 điểm hay phương trình \(f\left(x\right)=m\) có tối đa 3 nghiệm phân biệt
\(\Rightarrow\) Không tồn tại m để phương trình đã cho có 4 nghiệm phân biệt