Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

HP

Đại ca, Đại tỉ nào giúp muội muội này với... Làm hoài ko ra ( câu b ạ)

Cho hàm số \(y=x^3+mx^2-1\).

a) Chứng minh rằng hàm số trên luôn có cực đại, cực tiểu với mọi m khác 0.

b) CMR đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của m.

c)Tìm m để phương trình \(x^3+mx^2-1=0\) có ba nghiệm phân biệt.

AH
21 tháng 2 2017 lúc 18:52

Giải:

a) Xét \(y'=3x^2+2mx\)

Ta thấy \(y'=3x^2+2mx=0\)\(\Delta'=m^2>0\forall m\neq 0\) nên luôn có hai nghiệm phân biệt, đồng nghĩa với hàm số đã cho luôn có cực đại, cực tiểu với mọi \(m\neq 0\)

b) Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của $m$ nghĩa là phương trình \(x^3+mx^2-1=0\) luôn có nghiệm dương với mọi \(m\)

Xét hàm $y$ liên tục trên tập xác định.

Nếu \(m>0\)\(\left\{\begin{matrix} f(0)=-1<0\\ f(m+1)=(m+1)^3+m(m+1)^2-1>0\end{matrix}\right.\Rightarrow f(0).f(m+1)<0\)

Do đó phương trình luôn có nghiệm thuộc khoảng \((0;m+1)\), tức là nghiệm dương.

Nếu \(m<0\)\(\left\{\begin{matrix} f(0)=-1<0\\ f(1-m)=m^2-2m>0\forall m<0\end{matrix}\right.\Rightarrow f(0).f(1-m)<0\)

Do đó phương trình luôn có nghiệm thuộc khoảng \((0,1-m)\) , tức nghiệm dương

Từ hai TH ta có đpcm.

c) Để pt có $3$ nghiệm phân biệt thì \(y'=3x^2+2mx\) phải có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(f(x_1)f(x_2)<0\)

Kết hợp với định lý Viete:

\(\Leftrightarrow x_1^3+x_2^3+m(x_1^2+x_2^2)-1>0\)

\(\Leftrightarrow 4m^3-27>0\Leftrightarrow m>\frac{3}{\sqrt[3]{4}}\)

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
HM
Xem chi tiết
HM
Xem chi tiết
NV
Xem chi tiết
PD
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
HM
Xem chi tiết
TN
Xem chi tiết