VM

Tìm m để phương trình :\(\left(x-1\right)\left(x^2-2mx-m\right)=0\) có 3 nghiệm phân biệt trong đó có 2 nghiệm dương

CH
28 tháng 4 2016 lúc 9:10

Để phương trình trên có 3 nghiệm phân biệt thì phương trình \(x^2-2mx-m=0\left(1\right)\) phải có hai nghiệm phân biệt khác 1.

Trong 3 nghiệm phải có 2 nghiệm dương mà x = 1 là một nghiệm dương rồi nên phương trình (1) phải có 1 nghiệm dương và một nghiệm âm, hay nói cách khác là hai nghiệm trái dấu.

Kết hợp các điều kiện ta có phương trình (1) phải có 2 nghiệm phân biệt khác 1 và trái dấu nhau. Điều kiện đó cho ta hệ sau:

\( \begin{cases} \Delta>0\\ P<0\\ 1-2m-m \neq 0\\ \end{cases} \Leftrightarrow \begin{cases} m^2+m>0\\-m<0\\ m \neq \dfrac{1}{3}\\ \end{cases} \Leftrightarrow \begin{cases} m<-1 \text{ hoăc } m>0\\m>0\\ m \neq \dfrac{1}{3}\\ \end{cases} \Leftrightarrow \begin{cases} m>0\\ m \neq \dfrac{1}{3}\\ \end{cases} \)

Chúc em học tập tốt :))

Bình luận (0)
TN
28 tháng 4 2016 lúc 11:48

cô ơi ,cô viết cái j ở mấy dòng cuối thế ạ em xem chả hiểu cái j

Bình luận (0)
NT
29 tháng 4 2016 lúc 19:35

pt=>x=1

x^2-2mx-m=0 =>đenta phẩy=m^2+4m (*)

để pt có 3 nghiệm thì (*) >0

=>m^2+4m>0

giải bpt ra là dc

Bình luận (0)
H24
1 tháng 5 2016 lúc 17:01

cái này á:

:))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
CM
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TM
Xem chi tiết
CT
Xem chi tiết
HM
Xem chi tiết