Đặt \(y=3^x\Rightarrow\) pt trở thành \(t^2-3mt+4m+1=0\left(1\right)\)
Với mỗi nghiệm t cho một nghiệm x nên để pt đề cho có 2 nghiệm phân biệt thì pt (1) cũng có 2 nghiệm phân biệt
\(\Delta=9m^2-16m-4>0\Rightarrow\left[{}\begin{matrix}m>2\\m< -\dfrac{2}{9}\end{matrix}\right.\)
Ta có: \(x_1+x_2=9\Rightarrow3^{x_1+x_2}=3^9\Rightarrow3^{x_1}.3^{x_2}=3^9\Rightarrow t_1.t_2=3^9\)
Áp dụng định lý Vi-ét \(\Rightarrow4m+1=3^9\Rightarrow m=\dfrac{3^9-1}{4}=\dfrac{9841}{2}\) (thỏa điều kiện denta)