Bài 2: Cực trị hàm số

LH

Tìm m để hàm số \(f\left(x\right)=2x^3+3\left(m-1\right)x^2+6\left(m-2\right)x-1\) có đường thẳng đi qua cực địa, cực tiểu song song với đường thẳng \(y=ax+b\)

PV
23 tháng 4 2016 lúc 12:09

\(f'\left(x\right)=6\left(x^2+\left(m-1\right)x+m-2\right)\)

\(f'\left(x\right)=0\Leftrightarrow g\left(x\right)=x^2+\left(m-1\right)x+m-2=0\)

Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=0\) hay \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta_g=\left(m-3\right)^2>0\Leftrightarrow m\ne3\)

Ta có \(f\left(x\right)=g\left(x\right)\left[2x+\left(m-1\right)\right]-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

Với \(m\ne3\) thì \(g\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1;x_2\) và hàm số đạt cực trị tại  \(x_1;x_2\)  do \(\begin{cases}g\left(x_1\right)=0\\g\left(x_2\right)=0\end{cases}\) nên \(\begin{cases}y_1=f\left(x_1\right)=-m\left(m-3\right)^2x_1-\left(m^2-3m+3\right)\\y_2=f\left(x_2\right)=-m\left(m-3\right)^2x_2-\left(m^2-3m+3\right)\end{cases}\)

Suy ra đường thẳng qua cực đại, cực tiểu là :

\(\Delta:y=-\left(m-3\right)^2x-\left(m^2-3m+3\right)\)

ta có \(\Delta\) song song với đường \(y=ax+b\)

\(\Leftrightarrow\begin{cases}m\ne3\\-\left(m-3\right)^2=a\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne3,a< 0\\\left(m-3\right)^2=-a\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m-3=\pm\sqrt{-a}\end{cases}\) \(\Leftrightarrow\begin{cases}a< 0\\m=3\pm\sqrt{-a}\end{cases}\)

Vậy : Nếu \(a\ge0\) thì không tồn tại m

         Nếu a < 0 thì \(m=3\pm\sqrt{-a}\)

 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
VH
Xem chi tiết
TT
Xem chi tiết
NK
Xem chi tiết
DV
Xem chi tiết
TC
Xem chi tiết
DV
Xem chi tiết
BH
Xem chi tiết
LS
Xem chi tiết