Bài 2: Cực trị hàm số

DV

Tìm m để \(f\left(x\right)=x^3+mx^2+7x+3\) có đường thẳng đi qua cực đại, cực tiểu vuông góc với y=3x-7

PD
27 tháng 3 2016 lúc 9:54

Hàm số có cực đại, cực tiểu <=> \(f'\left(x\right)=3x^3+2mx+7=0\) có 2 nghiệm phân biệt

<=> \(\Delta'=m^2-21>0\Leftrightarrow\left|m\right|>\sqrt{21}\)

Thực hiện phép chia f(x) cho f'(x) ta có :

\(f\left(x\right)=\frac{1}{9}\left(3x+m\right)f'\left(x\right)+\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)

Với \(\left|m\right|>\sqrt{21}\) thì phương trình f'(x) = 0 có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số y=f(x) đạt cực trị tại \(x_1,x_2\)

Ta có \(f'\left(x_1\right)=f'\left(x_2\right)=0\) suy ra:

\(y_1=f\left(x_1\right)=\frac{2}{9}\left(21-m^2\right)x_1+3-\frac{7m}{9}\)

\(y_2=f\left(x_2\right)=\frac{2}{9}\left(21-m^2\right)x_2+3-\frac{7m}{9}\)

=> Đường thẳng đi qua cực đại, cực tiểu là :

\(\left(\Delta\right):y=\frac{2}{9}\left(21-m^2\right)x+3-\frac{7m}{9}\)

Ta có \(\left(\Delta\right)\perp y=3x-7\Leftrightarrow\frac{2}{3}\left(21-m^2\right).3=-1\Leftrightarrow m^2=\frac{45}{2}>21\)

                                        \(\Leftrightarrow m=\pm\frac{3\sqrt{10}}{2}\)

 

 

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
LH
Xem chi tiết
NB
Xem chi tiết
HH
Xem chi tiết
NU
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
BH
Xem chi tiết
NB
Xem chi tiết