Bài 1: Giải các phương trình
a)17x+15(x-1)=1-14(3x+1) b)2x(x+5)-(x-3)2 =x2+6 c)(4x+7)(x-5)-3x2=x(x-1) d) 6(x-3)+(x-1)
Bài 1: Giải các phương trình
a)17x+15(x-1)=1-14(3x+1) b)2x(x+5)-(x-3)2 =x2+6 c)(4x+7)(x-5)-3x2=x(x-1) d) 6(x-3)+(x-1)
1....cho hàm số y=-x3+3x2 -4 (C). Tìm m để đường thẳng d: y=m(x+1) cắt đồ thị (C) tại 3 điểm M(-1;0), B, C sao cho MA=2MB
2....Cho hàm số y=\(\frac{2x}{x+1}\) (C). Tìm 2 điểm thuộc (C) đối xứng qua d: 2x +y - 4 =0
3.... Cho h số y+\(\frac{x^2-2x+2}{x-1}\) (C).Tìm m để đường thẳng d: y= -x +m cắt (C) tại 2 điểm đối xứng nhau qua đường thẳng y = x+3
Tìm tất cả các giá trị m để bất phương trình \(\sqrt{\left(m+2\right)x+m}\ge\left|x-1\right|\) có nghiệm trên \(\left[0;2\right]\)
Cho hàm số y=\(\frac{1}{3}x^3-2x^2+3x-\frac{1}{3}\)
Tìm m để đường thẳng d: y=mx-\(\frac{1}{3}\) cắt đồ thị (C) tại 3 điểm phân biệt P,M,N sao cho P cố định và thỏa mãn \(S_{OMN}=2S_{OPM}\)
Cho hàm số : \(y=\frac{x+2}{x+1}\left(C\right)\)
Chứng minh rằng mọi m, đường thẳng \(d:y=x+m\) luôn cắt (C) tại 2 điểm phân biệt A, B. Tìm mọi giá trị m để 3 điểm A, B, O tạo thành tam giác thỏa mãn \(\frac{1}{OA}+\frac{1}{OB}=1\)
Cho hàm số y=\(\frac{2x-3}{x-2}\) (C),
a) Khảo sát và vẽ đồ thị hàm số (C).
b) Biện luận theo m số nghiệm của phương trình \(\frac{2x-3}{\left|x-2\right|}\)=m
Cho hàm số y=\(\frac{2x+1}{x+2}\) (C)
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Tìm t sao cho phương trình sau có đúng 2 nghiệm \(\frac{2sinx+1}{sinx+2}\)=t
Hóng cao thủ vào chỉ giáo:
1> Cho (C): y = \(\left(x^2-1\right)^2-\left(m+1\right)^2\left(1-m\right)^2\).
a> Biện luận theo m số giao điểm của (C) và Ox.
b> Tìm m sao cho (C) \(\cap\) Ox tại 4 điểm pb có hoành độ lập thành 1 cấp số cộng.
2> Cho (C): y = \(x^3+3x^2\) . Tìm trên Ox các điểm mà từ đó kẻ tới (C) 3 tiếp tuyến trong đó có 2 tiếp tuyến vuông góc với nhau.
Có bao nhiêu giá trị nguyẻn của tham số m để đồ thị hàm số y= -x^4+2(2+m)x^2-4-m không có điểm chung với trục hoành ????
Cho hàm số y=\(x^4-3x^2-4\) (C)
a) Khảo sát và vẽ đồ thị hàm số (C)
b) Biện luận theo m số nghiệm của phương trình \(\left|x^4-3x^2-4\right|\)=m