DX

Tìm hai số tự nhiên a và b biết: ƯCLN (a,b) + BCNN (a,b)=26

TH
8 tháng 1 2021 lúc 18:09

Không mất tính tổng quát giả sử \(a\le b\).

Nếu a = 0 thì (a, b) = b; [a, b] = 0 nên b = 26.

Xét a khác 0.

Đặt \(\left(a,b\right)=d\Rightarrow\left\{{}\begin{matrix}a=da'\\b=db'\end{matrix}\right.\) với (a', b') = 1; \(a'\le b'\).

Khi đó \(\left[a,b\right]=da'b'\).

Từ đề bài suy ra: \(d+da'b'=26\Leftrightarrow d\left(a'b'+1\right)=26\).

Do d, a', b' là các số tự nhiên nên ta có các trường hợp:

+) \(\left\{{}\begin{matrix}d=1\\a'b'=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=1\\a'=1;b'=25\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=1\\b=25\end{matrix}\right.\).

+) \(\left\{{}\begin{matrix}d=2\\a'b'=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=2\\\left[{}\begin{matrix}a'=1;b'=12\\a'=3;b'=4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2;b=24\\a=6;b=8\end{matrix}\right.\).

+) \(\left\{{}\begin{matrix}d=13\\a'b'=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=13\\a'=1;b'=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=13\\b=13\end{matrix}\right.\).

Vậy...

 

 

 

Bình luận (2)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết
LN
Xem chi tiết
TD
Xem chi tiết