x + y = x . y
=> xy - x - y = 0
x ( y - 1 ) - ( y -1 ) = 0 +1
( x -1 ) ( y -1 ) = 1
ta có : 1 = 1 .1 = ( -1 ) . ( -1 )
T/H1 : x -1 = 1=> x = 2
=> y - 1 = 1 = > x =2
T/H2 : x -1 = -1 => x = 0
=> y -1 = -1 => y = 0
Vậy ( x ; y ) \(\in\){ ( 2 ; 2 ) ; ( 0 ; 0 }
x+y - x+y =0
[x - xy]+y-1=-1
x.[1-y]-[-y+1]=-1
x.[1-y]-[1-y]=-1
[1-y] .[x-1]=-1
ta thay y thuoc z suy ra 1-y thuoc z
ta thay x thuoc z suy ra x-1 thuoc z
nen 1-y thuoc uoc cua -1
1-y thuoc 1 -1
ta co bang sau
1-y 1 -1
y 0 2
x-1 -1 1
x 0 2
\(x+y=xy\)
\(\Rightarrow0=xy-x-y\)
\(\Rightarrow xy-x-y=0\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=0+1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=1\)
\(\Rightarrow\left(x-1\right);\left(y-1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét bảng
x-1 | 1 | -1 |
y-1 | 1 | -1 |
x | 2 | 0 |
y | 2 | 0 |
Vậy.........................