Ta có: a.b = (a,b).[a,b] => (a,b) = 180:60 = 3
=>a = 3m, b = 3n, (m,n) = 1
=>[a,b] = 3.m.n = 60 => m.n = 20 => (m,n) ∈ {(4;5),(5;4)}
Vậy (a,b) ∈ {(12;15),(15;12)}
Ta có: a.b = (a,b).[a,b] => (a,b) = 180:60 = 3
=>a = 3m, b = 3n, (m,n) = 1
=>[a,b] = 3.m.n = 60 => m.n = 20 => (m,n) ∈ {(4;5),(5;4)}
Vậy (a,b) ∈ {(12;15),(15;12)}
Tìm hai số nguyên dương a, b biết ab = 180, [a, b] = 60
Tìm hai số nguyên dương a và b biết ab = 180 , [ a,b ] = 60
tìm hai số nguyên dương a,b
biết ab=180
BCNN(a,b)=60
Bài1
a)Tim hai số nguyên dương a va b biết
a.b=216va UWCLN(a,b)=6
b)Tìm hai số nguyên dương a và b biết tích
a.b=180 và BCNN(a,b)=60
c)tìm a và b biết
a\b=2,6va UWCLN(a,b)=5
Tìm 2 số nguyên dương biết : a.b=180 và BCNN(a,b)=60
tìm 2 số nguyên dương (a;b) biết: a x b = 180 và BCNN (a;b) = 60
1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299 CMR: A chia hết cho 31
b)tìm số tự nhiên n để 3n+4 chia hết cho n -1
2/tìm hai số nguyên dương a, b biết [ a,b] = 240 và (a,b) = 16
3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6
4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60
5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5
6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140
7/tìm số nguyên dương a,b biết a+b = 128 và (a ,b)=16
8/ a)tìm a,b biết a+b = 42 và [a,b] = 72
b)tìm a,b biết a-b =7 , [a,b] =140
9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10
10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300
11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1) chia hết cho 24
12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 , BCNN(a,b) = 180
tìm hai số tự nhiên a,b >0,biết ab=180,BCNN(a,b)=60
tìm hai số nguyên dương a,b biết a/b=2,6 và (a,b)=60