Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

GF

Tìm GTNN và GTLN của

\(D=\frac{x^2-x+1}{x^2+x+1}\)

TP
14 tháng 2 2019 lúc 19:44

Câu hỏi của Nguyễn Kim Chi - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
ND
14 tháng 2 2019 lúc 20:06

\(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0.\)

tương tự chứng minh x^2+x+1>0

\(-2\left(x^2+2x+1\right)\le0\Rightarrow-\frac{2\left(x^2+2x+1\right)}{x^2+x+1}\le0\)

\(\Rightarrow\frac{-2x^2-4x-x}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1-3x^2-3x-3}{x^2+x+1}\le0\Rightarrow\frac{x^2-x+1}{x^2+x+1}-3\le0\Rightarrow D\le3.\)

\(2\left(x^2-2x+1\right)\le0;3\left(x^2+x+1\right)>0\)

\(\frac{2\left(x^2-2x+1\right)}{3\left(x^2+x+1\right)}\ge0\Rightarrow\frac{2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{3\left(x^2-x+1\right)-x^2-x-1}{3\left(x^2+x+1\right)}=d-\frac{1}{3\Rightarrow}d\ge\frac{1}{3}\)

=> GTNN, GTLN

Bình luận (0)
NT
20 tháng 4 2020 lúc 16:41

Khó quá em không biết làm 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TN
Xem chi tiết
NB
Xem chi tiết
KT
Xem chi tiết
TL
Xem chi tiết
NU
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết
FY
Xem chi tiết
TM
Xem chi tiết