HM

tìm GTNN và GTLN của A=\(x^3+y^3\) biết  \(x,y\ge0\) \(,x^2+y^2=1\)

PC
30 tháng 10 2018 lúc 22:12

giúp mình với cho x+y+z=3 Tìm GTLN xy/(x+3y+2z) + yz/(y+3z+2x) + zx/(z+3x+2y)

Bình luận (0)
TL
9 tháng 8 2020 lúc 18:41

*) tìm giá trị lớn nhất: từ giả thiết \(\hept{\begin{cases}0\le x\le1\\0\le y\le1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3\le x^2\\y^3\le y^2\end{cases}\Leftrightarrow}x^3+y^3\le x^2+y^2=1}\)

maxA=1 \(\Leftrightarrow\hept{\begin{cases}x^3=x^2\\y^3=y^2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=1;y=0\end{cases}}}\)

*) tìm giá trị nhỏ nhất \(\left(x+y\right)^2\le2\left(x^2+y^2\right)=1\Rightarrow x+y\le\sqrt{2}\Rightarrow\frac{x+y}{\sqrt{2}}\le1\)

do đó \(x^3+y^3\ge\frac{\left(x^3+y^3\right)\left(x+y\right)}{\sqrt{2}}\)theo bđt Bunhiacopxki

\(\left(x^3+y^3\right)\left(x+y\right)=\left[\left(\sqrt{x^3}\right)^2+\left(\sqrt{y^3}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\)

\(\ge\left(\sqrt{x^3}\cdot\sqrt{x}+\sqrt{y^3}\cdot\sqrt{y}\right)^2=x^2+y^2=1\)

vậy minA=\(\frac{1}{\sqrt{2}}\Leftrightarrow x=y=\frac{\sqrt{2}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LT
Xem chi tiết
EQ
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
LA
Xem chi tiết
LC
Xem chi tiết
NQ
Xem chi tiết
PD
Xem chi tiết
LT
Xem chi tiết