TP

tìm GTNN

H=(x-2)(x+1)(x-2)(x+5)

Ko ghi sai đề đôu <333 Helpppppp

TT
27 tháng 7 2023 lúc 9:51

Để tìm giá trị nhỏ nhất của biểu thức GTNNH=(x-2)(x+1)(x-2)(x+5), ta cần tìm điểm cực tiểu của hàm số.

Đầu tiên, ta tính toán đạo hàm của hàm số GTNNH theo biến x:
GTNNH' = (x+1)(x-2)(x+5) + (x-2)(x+1)(x+5) + (x-2)(x+1)(x-2)

Tiếp theo, ta giải phương trình GTNNH' = 0 để tìm các điểm cực trị của hàm số:
(x+1)(x-2)(x+5) + (x-2)(x+1)(x+5) + (x-2)(x+1)(x-2) = 0

Sau khi giải phương trình trên, ta thu được các giá trị của x là -5, -1 và 2.

Tiếp theo, ta tính giá trị của GTNNH tại các điểm cực trị và so sánh để tìm giá trị nhỏ nhất:
GTNNH(-5) = (-5-2)(-5+1)(-5-2)(-5+5) = 0
GTNNH(-1) = (-1-2)(-1+1)(-1-2)(-1+5) = 0
GTNNH(2) = (2-2)(2+1)(2-2)(2+5) = 0

Như vậy, giá trị nhỏ nhất của biểu thức GTNNH=(x-2)(x+1)(x-2)(x+5) là 0.

Bình luận (0)