Bài làm :
\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)
Vì (x-10)2 ≥ 0 với mọi x
\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)
Dấu "=" xảy ra khi
(x-10)2 = 0
<=> x-10=0
<=> x=10
Vậy GTNN của biểu thức là : 1920 <=> x=10
\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì -(x-2)2 ≤ 0 với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảu ra khi :
x-2=0
<=> x=2
Vậy GTLN của biểu thức là -1 <=> x=2
x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x
Dấu "=" xảy ra <=> x = 10
Vậy GTNN của biểu thức = 1920 <=> x = 10
-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x
Dấu "=" xảy ra <=> x = 2
Vậy GTLN của biểu thức = -1 <=> x = 2