Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

tìm GTNN hoặc GTLN của

\(\left(x-4\right)^2+\left(x-5\right)^2\)

DT
2 tháng 8 2016 lúc 14:41

\(\left(x-4\right)^2+\left(x-5\right)^2\)

\(=x^2-8x+16+x^2-10x+25=2x^2-18x+41\)

\(=2\left(x^2-9x+\frac{41}{2}\right)=2\left[x^2-2.x.\frac{9}{2}+\left(\frac{9}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\)

Vì \(\left(x-\frac{9}{2}\right)^2\ge0\)

nên \(2\left(x-\frac{9}{2}\right)\ge0\)

do đó \(2\left(x-\frac{9}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Vậy \(Min_{\left(x-4\right)^2+\left(x-5\right)^2}=\frac{1}{2}\)khi \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Bình luận (0)

Các câu hỏi tương tự
NG
Xem chi tiết
HP
Xem chi tiết
PN
Xem chi tiết
PN
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
NU
Xem chi tiết
H24
Xem chi tiết