Ôn tập: Phân thức đại số

KV

Tìm GTNN hoặc GTLN của bt sau

a) x(3-x)+1

b)A= -1/x^2-6x+11

c) x^2+1/x^2+2x+1

Mình đang cần gấp

NT
9 tháng 2 2020 lúc 12:35

a) Ta có: \(x\left(3-x\right)+1=3x-x^2+1\)

\(=-x^2+3x+1=-\left(x^2-3x-1\right)\)

\(=-\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)

\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)

Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(x\left(3-x\right)+1\)\(\frac{13}{4}\) khi \(x=\frac{3}{2}\)

b) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2=\left(x-3\right)^2+2\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)

\(\Rightarrow\frac{-1}{\left(x-3\right)^2+2}\ge\frac{-1}{2}\forall x\)

hay \(A=\frac{-1}{x^2-6x+11}\ge-\frac{1}{2}\forall x\)

Dấu '=' xảy ra khi \(\left(x-3\right)^2+2=2\)

hay \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: Giá trị nhỏ nhất của biểu thức \(A=\frac{-1}{x^2-6x+11}\)\(-\frac{1}{2}\) khi x=3

Bình luận (0)
 Khách vãng lai đã xóa
NL
9 tháng 2 2020 lúc 12:24

a, Ta có : \(x\left(3-x\right)+1\)

= \(3x-x^2+1\)

= \(-\left(x^2-3x-1\right)\)

= \(-\left(x^2-2.x.\frac{3}{2}+2,25-3,25\right)\)

= \(-\left(\left(x-1,5\right)^2-3,25\right)\)

= \(3,25-\left(x-1,5\right)^2\)

Ta thấy : \(\left(x-1,5\right)^2\ge0\forall x\)

=> \(-\left(x-1,5\right)^2\le0\)

=> \(3,25-\left(x-1,5\right)^2\le3,25\)

- Dấu " = " xảy ra khi \(x-1,5=0\)

=> \(x=1,5\)

Vậy Max = 3,25 khi x = 1,5 .

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LV
Xem chi tiết
NB
Xem chi tiết
HP
Xem chi tiết
PP
Xem chi tiết
DY
Xem chi tiết
LN
Xem chi tiết
HA
Xem chi tiết
PN
Xem chi tiết
ND
Xem chi tiết