Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 9

PB

Tìm GTNN, GTLN của \(A=x^2+y^2\) , biết rằng:

\(x^2\left(x^2+2y^2-3\right)+\left(y^2-2\right)^2=1\)

NL
11 tháng 11 2019 lúc 10:15

\(x^4+2x^2y^2-3x^2+y^4-4y^2+4=1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2-4\left(x^2+y^2\right)+4=1-x^2\)

\(\Leftrightarrow\left(x^2+y^2-2\right)^2=1-x^2\le1\)

\(\Rightarrow-1\le x^2+y^2-2\le1\)

\(\Rightarrow1\le x^2+y^2\le3\)

\(A_{min}=1\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm1\end{matrix}\right.\)

\(A_{max}=0\) khi \(\left\{{}\begin{matrix}x=0\\y=\pm\sqrt{3}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
QD
Xem chi tiết
DF
Xem chi tiết
AP
Xem chi tiết