Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

H24

tìm gtnn của

p= m2 - 4mn +5n2 +10m - 22n +32

NA
30 tháng 11 2017 lúc 14:20

Ta có:\(p=\left(m^2-4mn+4n^2\right)+\left(10m-20n\right)+25+\left(n^2-2n+1\right)+6\)

\(\Rightarrow p=\left(m-2n\right)^2+2.5\left(m-2n\right)+5^2+\left(n-1\right)^2+6\)

\(\Rightarrow p=\left(m-2n+5\right)^2+\left(n-1\right)^2+6\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}m-2n+5=0\\n-1=0\end{cases}}\Rightarrow\hept{\begin{cases}m=-3\\n=1\end{cases}}\)

Vậy GTNN của p=6 khi m=-3  ;  n=1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
EC
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết
PP
Xem chi tiết
NA
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết