BK

Tìm GTNN của

\(D=3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|+3,5\)

H24
31 tháng 10 2018 lúc 21:23

Vì \(\hept{\begin{cases}\left(2x+3\right)^2\ge0\\\left|x^2-\frac{9}{4}\right|\ge0\end{cases}}\)=> \(D\ge3\cdot0+2\cdot0+3,5=3,5\)

Dấu = xảy ra khi       \(x=-\frac{3}{2}\)

Bình luận (0)
H24
31 tháng 10 2018 lúc 21:25

Ta có: 

\(D=3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|+3,5\)

Mà: \(\left(2x+3\right)^2\ge0\)          với mọi x 

   \(\left|x^2-\frac{9}{4}\right|\ge0\)   với mọi x

\(\Rightarrow3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|\ge0\)

\(\Rightarrow3\left(2x+3\right)^2+2\left|x^2-\frac{9}{4}\right|+3,5\ge3,5\)

Dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x+3=0\\x^2-\frac{9}{4}=0\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{3}{2}\\x=\pm\frac{3}{2}\end{cases}\Rightarrow}x=\pm\frac{3}{2}}\)

Vậy: GTNN của D bằng 3,5 khi x = \(\pm\)\(\frac{3}{2}\)

Bình luận (0)
H24
31 tháng 10 2018 lúc 21:26

Bạn phuong là sai r, hợp của chúng phải là x=-3/2 mới đúng

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DX
Xem chi tiết
NL
Xem chi tiết
TM
Xem chi tiết
SG
Xem chi tiết
TN
Xem chi tiết
GW
Xem chi tiết
NA
Xem chi tiết
SK
Xem chi tiết