ta có Ix- 3I >= 0
Ix-5I >= 0
=> A >= 0
Đấu "=" đúng ở dạng ta có 2 th
TH1 x-3 = 0 => x = 3
=>Ix-5I = I3-5I = I-2I = 2
=> A = 0 + 2 =2
th2 x-5 = 0 => x = 5
=>Ix-3I = I5-3I = 2
=> A = 0+2 = 2
VẬY giá tri nhỏ nhất của A = 2
\(\left|x-3\right|+\left|x+5\right|\)
\(=\left|3-x\right|+\left|x+5\right|\ge\left|3-x+x+5\right|=8\)
\(\text{Dấu = xảy ra}\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)
\(-5\le x\le3\)
\(\text{Vậy A đạt GTNN là 8 khi }-5\le x\le3\)
\(A=|x-3|+|x+5|\)
\(=|3-x|+|x+5|\ge|3-x+x+5|\)
Hay \(A\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\left(3-x\right)\left(x+5\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-x\ge0\\x+5\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-x< 0\\x+5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge-5\end{cases}}\)hoặc \(\hept{\begin{cases}x>3\\x< -5\end{cases}\left(loai\right)}\)
\(\Rightarrow-5\le x\le3\)
Vậy Min A=8 \(\Rightarrow-5\le x\le3\)
dòng cuối không phải là dấu suy ra mà là khi và chỉ khi nhé sửa hộ