đk: \(x>0\)
\(P=\frac{x+\sqrt{x}+2\sqrt{x}+2+2}{\sqrt{x}+1}=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)+2}{\sqrt{x}+1}\)
\(=\sqrt{x}+2+\frac{2}{\sqrt{x}+1}=\sqrt{x}+1+\frac{2}{\sqrt{x}+1}+1>=2\sqrt{\frac{\left(\sqrt{x}+1\right)2}{\sqrt{x}+1}}+1=2\sqrt{2}+1\)(bđt cosi)
dấu = xảy ra khi
\(\sqrt{x}+1=\frac{2}{\sqrt{x}+1}\Rightarrow\left(\sqrt{x}+1\right)^2=2\Rightarrow\sqrt{x}+1=\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{2}-1\Rightarrow x=\left(\sqrt{2}-1\right)^2\)
\(=2-2\sqrt{2}+1=3-2\sqrt{2}\)
vậy min x là \(2\sqrt{2}+1\)khi x= \(3-2\sqrt{2}\)
Đúng 0
Bình luận (0)