\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
\(P_{min}=\frac{3}{2}\) khi \(a=b=c\)
\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
\(P_{min}=\frac{3}{2}\) khi \(a=b=c\)
1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10
A.4 B.5 C.9 D.10
2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)
A. 5 B.6 C.21 D.40
3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x
A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ
4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]
5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng
A. 15 B. 26 C. 11 D. 0
6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi
A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R
7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm
A. 0 B.1 C.2 D. vô số
8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là
A. 0 B.1 C.2 D.3
9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]
A. m< \(\frac{7}{2}\) B. m= \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R
10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]
A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2
Cho a,b,c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{3\left(b+c\right)}{2a}+\frac{4a+3c}{3b}+\frac{12\left(b-c\right)}{2a+3c}\)
1, cho a,b,c là 3 số đôi một khác nhau thỏa mãn (a + b + c)2=a2 + b2 + c2
tính giá trị của biểu thức P =\(\frac{a^2}{a^2+2bc}\)+ \(\frac{b^2}{b^2+2ac}\)+\(\frac{c^2}{c^2+2ab}\)
2,tìm số tự nhiên a để a + 1 ; 4a2 + 8a + 5 và 6a2 + 12a + 7 là các số nguyên tố
1. tìm tất cả các giá trị thực của tham số m để hàm số y= \(\sqrt{x-m}-\sqrt{6-2x}\) có tập xác định là một đoạn trên trục số
A. m=3 B=m<3 C. m>3 D. m<\(\frac{1}{3}\)
2. tìm tất cả các giá trị thực của hàm số y=\(\sqrt{m-2x}\)-\(\sqrt{x+1}\) có tập xác định là một đoạn trên trục số
A.m<-2 B.m>2 C. m>-\(\frac{1}{2}\) D. m>-2
3. bất phương trình nào sau đây tương đương với bất phương trình x+5>0
A. (x-1)2 (x+5) > 0 B. x2 (x+5) >0
C. \(\sqrt{x+5}\left(x+5\right)\)> 0 D. \(\sqrt{x+5}\left(x-5\right)\)>0
4. bất phương trình ax+b > 0 vô nghiệm khi
A.\(\left\{{}\begin{matrix}a\ne0\\b=0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)
5.bất phương trình ax+b>0 có tập nghiệm R khi
A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)
6.bất phương trình ax+b \(\le\)0 vô nghiệm khi
A.\(\left\{{}\begin{matrix}a=0\\b>0\end{matrix}\right.\) B.\(\left\{{}\begin{matrix}a>0\\b>0\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}a=0\\b\ne0\end{matrix}\right.\) D.\(\left\{{}\begin{matrix}a=0\\b\le0\end{matrix}\right.\)
7.tập nghiệm S của bất phương trình \(5x-1\ge\frac{2x}{5}+3\) là
A. R B. (-∞; 2) C. (-\(\frac{5}{2}\); +∞) D. \([\frac{20}{23}\); +∞\()\)
MONG MỌI NGƯỜI GIẢI CHI TIẾT GIÚP EM Ạ TvT
Câu 1: Xét dấu:
a, f(x)= (x2+3x+2)(x+4)
b, f(x)= \(\frac{x+1}{\left(x^2+1\right)\left(4-x^2\right)}\)
Câu 2: Giải bất phương trình:
a, (2x+3)(x2-x-2)≥0
b, \(\frac{x+3}{\left(x^2-1\right)}\)≥0
c, \(\frac{x}{x+1}\)≥2x
câu 1: cho các số thực a b thỏa mãn a+b+c=3 tim GTNN cua bieu thuc P=1/a + 1/b -c
câu 2 tìm m để f(x)=(m+2)x2-6x+1 không dương với mọi x thuộc R
câu 3: chứng minh bất đẳng thức: a2+b2/ab + ab/a2+b2 >= 5/2 với a,b>0
1.Cho x, y ,z là 3 số dương thỏa mãn xy + yz + zx = 3 . CMR:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
2. Cho biểu thức \(f\left(x\right)=\frac{\left(2-m\right)x^2+2\left(m-2\right)x-3m+1}{-4x^2+12x-10}\)
a. Tìm m để f(x) =0 có 2 nghiệm pb
b. tìm m để f(x) > 0 với mọi x ∈ R
giải bất phương trình
a/\(\frac{x^4-x^2}{x^2+5x+6}\le0\)
b/\(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
c/\(\frac{x^4+x^2+1}{x^2-4x-5}\le0\)
d/\(\frac{-2x^2+7x+7}{x^2-3x-10}\le-1\)
e/\(\frac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\frac{1}{x-2}\)
1. giải bất phương trình
\(\frac{\left(3x+1\right)\left(-x^2+2x-1\right)}{\left(2-3x\right)\left(2x^2+3x+1\right)}\) bé hơn hoặc = 0
( phương trình ax2 +bx+c=0 có 2 nghiệm phân biệt là a khác 0 hoặc đenta lớn hơn 0)
( phương trình ax2+bx+c=0 có 2 nghiệm trái dấu <=> a.c<0)
2. tìm m để
a. phương trình (m+1)x2 -(3m -2)x+m+1 =0 có 2 nghiệm phân biệt
b. phương trình ( 2m+1)x2 -(4m-1)x+4m-1=0 có 2 nghiệm phân biệt